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Abstract. The geometry of a smooth line is characterized locally by its curvature and torsion, or globally
by its writhe. In many situations of physical interest the line is, however, not smooth so that the classical
Frenet description of the geometry breaks down everywhere. One example is a thermalized stiff polymer
such as DNA, where the shape of the molecule is the integral of a Brownian process. In such systems a
natural frame is defined by parallel transport. In order to calculate the writhe of such non-smooth lines we
study the area distributions of random walks on a sphere. A novel transposition of these results occurs in
multiple light scattering where the writhe of the light path gives rise to a Berry phase recently observed
in scattering experiments in colloidal suspensions.

PACS. 87.15.Ya Fluctuations – 42.25.Dd Wave propagation in random media – 87.16.Ac Theory
and modeling; computer simulation

1 Introduction

The classic mathematical description of the geometry of
a line in three dimensional space uses a specific choice
of frame, the Frenet frame [1] involving the tangent,
t the normal, n and binormal, b to the curve. How-
ever [2] this description is only valid for curves which
are C3, and for which the curvature, κ does not vanish.
Locally, by appropriate choice of axes, the shape of a
three dimensional curve is approximated by the curve [3]
as r(s) =

(
s, κ

2 s2, κτ
6 s3

)
where τ is the torsion and s

the curvilinear distance, showing, explicitly, the need for
high order derivatives in order to define the torsion. In
this article we show that while many problems involving
elastic beams often fall within this class of smoothness
the case of non-smooth curves is very far from being a
mathematical curiosity; it is even the generic case when
one is is interested the statistical mechanics of fluctuating
lines. Recent micromanipulation experiments performed
on DNA molecules are one place where these considera-
tions have been found to be important.

Very similar ideas have recently been shown to apply
in multiple light scattering [4] where the tortuosity of the
light path through a sample gives rise to a Berry phase.
We shall show here that the theory of Berry phases in
multiple scattering samples is closely related to the statis-
tical mechanics of DNA considered as a fluctuating, stiff
thread.
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2 Intrinsic geometry of a line

The description of the geometry based on the Frenet frame
can be replaced by one based on the intrinsic geometry
of the tangent space to a curve: The unit tangent t(s)
to a curve lives on a sphere, S2. We now chose an arbi-
trary initial vector n′(0), perpendicular to t(0). Clearly
any vector which is perpendicular to t(s) is in the tangent
space of S2, allowing a definion n′(s) by parallel trans-
port from n′(0) [5]. Finally, define b′ to be perpendicular
to both t and n′, forming the alternative frame. Clearly
this recipe is defined for all curves for which t(s) is con-
tinuous even if non-smooth.

Parallel transport about a closed loop on a sphere leads
to an anholonomy. This anholonomy has been indepen-
dently discovered many times in different fields of physics.
Indeed Foucault’s pendulum can be understood as one
simple example of this phenomenon [6]. In the literature
on DNA and knots following Fuller [7] and White [8] the
anholonomy is known as writhing, Wr; it was discovered
as part of a topological invariant of closed ribbons, the
linking number. In the quantum literature the anholon-
omy is the origin of the geometric phase discussed by
Rytov [9] and Berry [10]. Some physical consequences are
illustrated in a simple example in Figure 1. In this figure
a square prism is folded into a non-planar configuration.
One face of the prism is marked with a vector E. We see
that the bending of the prism in three dimensional space
has led to a rotation of the vector E about the vertical axis.
We now consider the spherical curve t(s) corresponding to
Figure 1; application of the Gauss-Bonnet theorem to t(s)
allows one to calculate the angle of rotation: It is identical
to the area enclosed by t(s) on S2. Indeed we find that
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Fig. 1. A tortuous bar in space can represent either the shape
of a fluctuating molecule such as DNA, or the path of a light
beam transmitted along a fibre. The relative rotation, Φ = π/2,
between the two ends is an example of writhe, Wr where Φ =
2π Wr. For light transmitted along a fibre with polarization
vector E this rotation is a simple example of a Berry phase.

t(s) encloses 1/8 of a sphere, corresponding to a rotation
of π/4 of the vector E.

We note that for smooth lines for which t(s) is a closed
curve the local measure of the tortuosity of a curve, τ and
the global measure, Wr are linked by the equation

2πWr +
∫

τ ds = 0 mod 2π. (1)

3 Statistical mechanics of bending of stiff
polymers

The bending energy of a stiff beam in the slender body
approximation of elasticity is given by

E =
K
2

∫ (
dt(s)
ds

)2

ds , (2)

where K is the bending modulus. Such elastic descrip-
tions are often used to describe the mechanics of stiff
biopolymers. At a non-zero temperature the polymer re-
tains memory of its orientation over a characteristic dis-
tance �p = K/kBT where T is the temperature. �p is
known as the persistence length. This length should be
compared with the diameter, d of the polymer. Clearly it
is only when lp/d is large that a continuum description
in terms of an elastic line has sense. For DNA one finds
lp ∼ 50 nm and lp/d ∼ 30. Other stiffer biopolymers such
as actin filaments are also studied in the laboratory with
values of lp/d as large as 2000. These filamentary systems
are particularly easy to study using methods such as scan-
ning fluorescence microscopy which allow direct measures
of the three dimensional shape of the system.

To calculate the partition function one must now
sum over all paths Z =

∑
paths e−E/kBT . The sum for

the partition function is clearly closely related to path
integrals studied in quantum mechanics. Formally the
energy equation (2) looks like the kinetic energy of a free

particle moving on a sphere. From the sum over paths one
derives a Fokker-Planck equation [11] which is entirely
analogous to the Schroedinger equation for a particle on
a sphere:

∂P (t, s)
∂s

=
1

2�p
∇2P (t, s) , (3)

where ∇2 is the Laplacian operator on the sphere. Here
P (t, s) is the probability of finding the chain oriented
in the direction t at the point s. As a function of s the
vector t “diffuses” with diffusion coefficient 1/(2�p). The
full distribution function of the orientational and spatial
degrees of freedom for the polymer Q(r, t, s) is then
found by noting that the shape of the polymer is found
by integration of t(s) so that

∂Q

∂s
+ t · ∇rQ =

1
2�p

∇2
tQ (4)

i.e. the shape evolves by convection along t.
From the diffusion like equation (3) we understand why

the torsion and the Frenet frame are not useful at non-zero
temperatures: A typical configuration of a stiff polymer is
the realization of an orientational diffusion process. t(s) is
continuous but not differentiable; the Frenet frame is un-
defined everywhere (with probability 1). Despite this low
smoothness it is possible to study the parallel transport
of the vector n′.

In applications in polymer physics one is interested in
the magnitude of torsional fluctuations (such as shown in
Fig. 1) due to the thermal fluctuations. Using the Fuller-
Berry result linking anholonomy to t(s) one is lead to
study the distribution distribution of the area enclosed by
loops by Brownian paths. This is in fact an old problem,
first treated by Levy [12] in the Euclidean plane and more
recently on the sphere [13]. For short chains we use Levy’s
results to explicity find the the distribution of the angle
of rotation Φ due to writhing between the ends of a fila-
ment of length L as P(Φ) = �p/2L cosh2(Φ �p/L). For long
chains the problem is difficult, there are ambiguities in the
definition of area on the sphere [14]. The Gauss-Bonnet
theorem only allows a definition of the area mod 4π and
the more elaborate expression of Călugăreanu based on
the Gauss linking linking number must be used to calcu-
late the rotation angle.

4 Application to DNA

Very elegant experiments have been performed [16] on the
mechanics of thermalized DNA molecules and interpreted
with theories of fluctuating elastic threads. In these exper-
iments a bead is attached to each end of a long molecule.
The beads are held in magnetic traps which allows the si-
multaneous application of a force and couple. To describe
these experiments theoretically one adds the force and
couple into the bending energy equation (2). This leads
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to a Hamiltonian analogous to that of a particle in the
presence of a Dirac monopole [17].

E =
K
2

∫ (
dt(s)
ds

)2

+ f t · êz + Γ
(êz × t)
1 + t · êz

· ṫ ds, (5)

where f is the external force pulling in the direction êz

and Γ is the external torque. Experimentally one mea-
sures the mean separation of the two beads as a function
of f and Γ . Good agreement is found with calculations
based on equation (5). Most experiments can however be
explained with a version of this Hamiltonian expanded to
quadratic order in the fluctuations in t, valid when the
external force is larger than kBT/�p [18].

Under large forces this continuum description of DNA
molecules breaks down due to an instability in the base
structure of the molecule. For even higher forces the hy-
drogen bonds holding the two DNA strands are torn apart
and the molecule is denatured. These events are clearly be-
yond any continuum theory and are must be treated by
atomistic simulations [19].

5 Multiple light scattering

If one shines light into a inhomogeneous medium then the
direction of propagation of the light is modified by scatter-
ing. Eventually the light gets back to the surface and re-
escapes from the material. Such strongly scattering media
are familiar from every day life, for instance milk, white
paper or even biological tissues. One is often interested in
optical imaging as deeply as possible in these materials:
A particularly important application is the diagnostics of
severe burns; one needs to know the degree of tissue dam-
age as a function of depth over a large area. Empirically
it is known that the quality of imaging in such media is
enhanced if polarization discrimination is used to filter the
light. Rather surprisingly circularly and linearly polarized
light do not display the same quality and resolution in
imaging. We shall now show that the statistical mechani-
cal treatment of scattering in such media is very close to
that of the stiff polymer introduced above. The idea of
parallel transport will be used to understand the polar-
ization patterns observed at the surface of samples.

In systems with weak, large scale heterogeneities, the
scattering of a beam of light is largely in the forward direc-
tion [20]. Each independent scattering event changes the
direction of propagation by some small random angle. We
model this process as giving rise to angular diffusion in the
propagation direction of the light just as in equation (3).
As shown in [21] the helicity of photons is conserved in
forward scattering processes over a length which is larger
than �p. We shall thus neglect such events in the following
discussion. This conservation implies that the polariza-
tion vector of linearly polarized light evolves by parallel
transport on S2 with t the direction of propagation of the
light and n′ the polarization vector during the scattering
process. This is exactly the condition needed for the de-
velopment of a Berry or geometric phase in the scattered
light.

Fig. 2. Contour level image of polarization patterns on the
surface of a beaker of a colloidal solution [22] of 2 µm latex
beads. Linearly polarized light is incident at a spot at the cen-
ter of the image. The surface of the beaker is imaged with
a camera through a linear analyzer. The analyzer is crossed
with respect to the polarization of the incident beam. We see
a clear fourfold symmetry in the intensity of the backscattered
light with the maximum in inclined intensity at an angle of 45
degrees to the direction of the polarizers.

We use these remarks to understand recent rather el-
egant experiments [22] performed on colloidal solutions,
motivated by problems in biological imaging. In the ex-
periments a linearly polarized light beam is focused to a
point on the surface of a colloidal solution. The surface of
the solution is then imaged through a second linear an-
alyzer. One observes a clear pattern of brightness on the
surface with fourfold symmetry about the incident beam,
Figure 2.

Let us proceed by translating the backscattering ge-
ometry into an ensemble of paths on the unit sphere, {t}
in order to apply the Fuller-Berry’s result. As shown in
Figure 3 backscattered light corresponds to a path from
the south to north poles of the sphere, t(s), describing
the direction of propagation. Each path from the south to
north pole is a realization of a random walk on the sphere.
We take as a reference state light scattered to the left, po-
larized in the plane of the page. For the reference state
the original polarization vector EA is parallel transported
around the sphere, Figure 3 (bottom) so that the initial
and final vectors are antiparallel. Consider, now, a second
azimuthal direction with a trajectory t′(s). This new tra-
jectory together with the reference path form a closed loop
on the sphere which allow us to apply the Berry result. As
the point of observation on the sample, B, changes and
winds an angle of 2π about the incident beam, A, the new
path t′(s) on the sphere sweeps out a solid angle of 4π.

Clearly in a given azimuthal direction different paths
are possible with a distribution of values possible for the
writhe. With an incoherent light source one must sum the
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Fig. 3. Top: Light is incident on a multiple scattering medium.
The direction of propagation is randomly bent back and the
light escapes from the surface. Bottom The direction of prop-
agation of the scattered light is plotted on a sphere. Incident
light corresponds to the south pole, A. The escaping light cor-
responds to the north pole, B. The indicated path is scattered
principally to the left so that on the sphere the path remains,
on average on the western area of the sphere. As the point of
observation goes around the incident beam, an angle of 2π,
the path between the poles sweeps out an area on the sphere
of 4π. From the results on geometric phases we deduce that
the polarization also rotates 4π.

intensity over all paths in a given azimuthal direction.
Since these paths are correlated we deduce that the po-
larization at the surface of the sample rotates 4π or two
full turns as we move just once about the incident beam.
Since a linear analyzer is sensitive to the angle of rotation
modulo π we see that there are four radial directions in
which an analyzer detects a maximum in the intensity.

One can now understand that the difference in the cou-
pling of the Berry phase to linearly and circularly polar-
ized light is partially responsible for their different imag-
ing qualities in tissue: An object hidden deep under the
surface of the beaker in Figure 2 can only weakly mod-
ify the intensity at the surface. This weak modification is
easily hidden by the strong variation in intensity due to
the Berry phase.

6 Conclusions

We have seen that two rather different physical systems
are explained using simple ideas from the geometry of
lines. In many physical situations a description in terms of
parallel transport and intrinsic geometry is more natural
than the classic description based on the Frenet Frame.

Finally we note there is subtle point that we
have skipped over in the light scattering problem: The
scattering cross-section of spherical particles in the
Rayleigh-Gans regime decays rather slowly at large angles.
The mean square scattering angle thus contains a logarith-
mic divergence which implies that the angular diffusion co-
efficient is not defined unless a cut off is introduced in the
problem. In systems with smoother variations of the opti-
cal properties such as a critical fluid the scattering cross
section falls off quickly and no cut off is needed. This diver-
gence is also linked with the helicity filiping which occurs
in scattering from spherical particles [21].

The image of Figure 2 was kindly provided by A.H. Hielscher,
Depts. of Biomedical Engineering and Radiology, Columbia
University, New York, NY.
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